Integrate with Machine Learning APIs: Challenge Lab

 


GSP329 : Integrate with Machine Learning APIs: Challenge Lab :-


----------------------------------------------------------------------------------------------------------------------------------------------


// Run in Cloud Shell :-


export SANAME=challenge

gcloud iam service-accounts create $SANAME

gcloud projects add-iam-policy-binding $DEVSHELL_PROJECT_ID --member=serviceAccount:$SANAME@$DEVSHELL_PROJECT_ID.iam.gserviceaccount.com --role=roles/bigquery.admin

gcloud projects add-iam-policy-binding $DEVSHELL_PROJECT_ID --member=serviceAccount:$SANAME@$DEVSHELL_PROJECT_ID.iam.gserviceaccount.com --role=roles/storage.admin

gcloud iam service-accounts keys create sa-key.json --iam-account $SANAME@$DEVSHELL_PROJECT_ID.iam.gserviceaccount.com

export GOOGLE_APPLICATION_CREDENTIALS=${PWD}/sa-key.json

gsutil cp gs://$DEVSHELL_PROJECT_ID/analyze-images.py .



// Open Editor and replace the content of "analyze-images.py" file with :-



# Dataset: image_classification_dataset


# Table name: image_text_detail


import os


import sys




# Import Google Cloud Library modules


from google.cloud import storage, bigquery, language, vision, translate_v2




if ('GOOGLE_APPLICATION_CREDENTIALS' in os.environ):


    if (not os.path.exists(os.environ['GOOGLE_APPLICATION_CREDENTIALS'])):


        print ("The GOOGLE_APPLICATION_CREDENTIALS file does not exist.\n")


        exit()


else:


    print ("The GOOGLE_APPLICATION_CREDENTIALS environment variable is not defined.\n")


    exit()




if len(sys.argv)<3:


    print('You must provide parameters for the Google Cloud project ID and Storage bucket')


    print ('python3 '+sys.argv[0]+ '[PROJECT_NAME] [BUCKET_NAME]')


    exit()




project_name = sys.argv[1]


bucket_name = sys.argv[2]




# Set up our GCS, BigQuery, and Natural Language clients


storage_client = storage.Client()


bq_client = bigquery.Client(project=project_name)


nl_client = language.LanguageServiceClient()




# Set up client objects for the vision and translate_v2 API Libraries


vision_client = vision.ImageAnnotatorClient()


translate_client = translate_v2.Client()




# Setup the BigQuery dataset and table objects


dataset_ref = bq_client.dataset('image_classification_dataset')


dataset = bigquery.Dataset(dataset_ref)


table_ref = dataset.table('image_text_detail')


table = bq_client.get_table(table_ref)




# Create an array to store results data to be inserted into the BigQuery table


rows_for_bq = []




# Get a list of the files in the Cloud Storage Bucket


files = storage_client.bucket(bucket_name).list_blobs()


bucket = storage_client.bucket(bucket_name)




print('Processing image files from GCS. This will take a few minutes..')




# Process files from Cloud Storage and save the result to send to BigQuery


for file in files:    


    if file.name.endswith('jpg') or  file.name.endswith('png'):


        file_content = file.download_as_string()


        


        # TBD: Create a Vision API image object called image_object 


        # Ref: https://googleapis.dev/python/vision/latest/gapic/v1/types.html#google.cloud.vision_v1.types.Image


        from google.cloud import vision_v1


        import io


        client = vision.ImageAnnotatorClient()






        # TBD: Detect text in the image and save the response data into an object called response


        # Ref: https://googleapis.dev/python/vision/latest/gapic/v1/api.html#google.cloud.vision_v1.ImageAnnotatorClient.document_text_detection


        image = vision_v1.types.Image(content=file_content)


        response = client.text_detection(image=image)


    


        # Save the text content found by the vision API into a variable called text_data


        text_data = response.text_annotations[0].description




        # Save the text detection response data in <filename>.txt to cloud storage


        file_name = file.name.split('.')[0] + '.txt'


        blob = bucket.blob(file_name)


        # Upload the contents of the text_data string variable to the Cloud Storage file 


        blob.upload_from_string(text_data, content_type='text/plain')




        # Extract the description and locale data from the response file


        # into variables called desc and locale


        # using response object properties e.g. response.text_annotations[0].description


        desc = response.text_annotations[0].description


        locale = response.text_annotations[0].locale


        


        # if the locale is English (en) save the description as the translated_txt


        if locale == 'en':


            translated_text = desc


        else:


            # TBD: For non EN locales pass the description data to the translation API


            # ref: https://googleapis.dev/python/translation/latest/client.html#google.cloud.translate_v2.client.Client.translate


            # Set the target_language locale to 'en')


            from google.cloud import translate_v2 as translate


            


            client = translate.Client()


            translation = translate_client.translate(text_data, target_language='en')


            translated_text = translation['translatedText']


        print(translated_text)


        


        # if there is response data save the original text read from the image, 


        # the locale, translated text, and filename


        if len(response.text_annotations) > 0:


            rows_for_bq.append((desc, locale, translated_text, file.name))




print('Writing Vision API image data to BigQuery...')


# Write original text, locale and translated text to BQ


# TBD: When the script is working uncomment the next line to upload results to BigQuery


errors = bq_client.insert_rows(table, rows_for_bq)




assert errors == []






// In Cloud Shell run :-


python3 analyze-images.py $DEVSHELL_PROJECT_ID $DEVSHELL_PROJECT_ID


// Navigation Menu -> BigQuery, Run :-


SELECT locale,COUNT(locale) as lcount FROM image_classification_dataset.image_text_detail GROUP BY locale ORDER BY lcount DESC

Comments

Popular posts from this blog

Create ML Models with BigQuery ML:Challenge Lab

My Experience in LGM-SOC

Perform Foundational Data, ML, and AI Tasks in Google Cloud