Create ML Models with BigQuery ML:Challenge Lab

 

GSP341 : Create ML Models with BigQuery ML: Challenge Lab :-


----------------------------------------------------------------------------------------------------------------------------------------------


Task 1: Create a dataset to store your machine learning models :-


In Cloud Shell :-


bq mk austin


// Navigation Menu -> BigQuery.


----------------------------------------------------------------------------------------------------------------------------------------------


Task 2: Create a forecasting BigQuery machine learning model :-


// In BigQuery Console Query Editor :-


CREATE OR REPLACE MODEL austin.location_model

OPTIONS

  (model_type='linear_reg', labels=['duration_minutes']) AS

SELECT

    start_station_name,

    EXTRACT(HOUR FROM start_time) AS start_hour,

    EXTRACT(DAYOFWEEK FROM start_time) AS day_of_week,

    duration_minutes,

FROM

    `bigquery-public-data.austin_bikeshare.bikeshare_trips` AS trips

JOIN

    `bigquery-public-data.austin_bikeshare.bikeshare_stations` AS stations

ON

    trips.start_station_name = stations.name

WHERE

    EXTRACT(YEAR FROM start_time) = 2018

    AND duration_minutes > 0


----------------------------------------------------------------------------------------------------------------------------------------------


Task 3: Create the second machine learning model :-

 

// In BigQuery Console Query Editor :-


CREATE OR REPLACE MODEL austin.subscriber_model

OPTIONS

  (model_type='linear_reg', labels=['duration_minutes']) AS

SELECT

    start_station_name,

    EXTRACT(HOUR FROM start_time) AS start_hour,

    subscriber_type,

    duration_minutes

FROM `bigquery-public-data.austin_bikeshare.bikeshare_trips` AS trips

WHERE EXTRACT(YEAR FROM start_time) = 2018


----------------------------------------------------------------------------------------------------------------------------------------------


Task 4: Evaluate the two machine learning models :-


// In BigQuery Console Query Editor :-


// Query - 1 :-


-- Evaluation metrics for location_model

SELECT

  SQRT(mean_squared_error) AS rmse,

  mean_absolute_error

FROM

  ML.EVALUATE(MODEL austin.location_model, (

  SELECT

    start_station_name,

    EXTRACT(HOUR FROM start_time) AS start_hour,

    EXTRACT(DAYOFWEEK FROM start_time) AS day_of_week,

    duration_minutes

  FROM

    `bigquery-public-data.austin_bikeshare.bikeshare_trips` AS trips

  JOIN

   `bigquery-public-data.austin_bikeshare.bikeshare_stations` AS stations

  ON

    trips.start_station_name = stations.name

  WHERE EXTRACT(YEAR FROM start_time) = 2019)

)


// Query - 2 :-


-- Evaluation metrics for subscriber_model

SELECT

  SQRT(mean_squared_error) AS rmse,

  mean_absolute_error

FROM

  ML.EVALUATE(MODEL austin.subscriber_model, (

  SELECT

    start_station_name,

    EXTRACT(HOUR FROM start_time) AS start_hour,

    subscriber_type,

    duration_minutes

  FROM

    `bigquery-public-data.austin_bikeshare.bikeshare_trips` AS trips

  WHERE

    EXTRACT(YEAR FROM start_time) = 2019)

)


----------------------------------------------------------------------------------------------------------------------------------------------


Task 5: Use the subscriber type machine learning model to predict average trip durations :-


// In BigQuery Console Query Editor :-


// Query - 1 :-


SELECT

  start_station_name,

  COUNT(*) AS trips

FROM

  `bigquery-public-data.austin_bikeshare.bikeshare_trips`

WHERE

  EXTRACT(YEAR FROM start_time) = 2019

GROUP BY

  start_station_name

ORDER BY

  trips DESC


// Query - 2 :-


SELECT AVG(predicted_duration_minutes) AS average_predicted_trip_length

FROM ML.predict(MODEL austin.subscriber_model, (

SELECT

    start_station_name,

    EXTRACT(HOUR FROM start_time) AS start_hour,

    subscriber_type,

    duration_minutes

FROM

  `bigquery-public-data.austin_bikeshare.bikeshare_trips`

WHERE 

  EXTRACT(YEAR FROM start_time) = 2019

  AND subscriber_type = 'Single Trip'

  AND start_station_name = '21st & Speedway @PCL'))

Comments

Popular posts from this blog

Perform Foundational Data, ML, and AI Tasks in Google Cloud

My Experience in LGM-SOC